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Euler equations of the three-dimensional motion of a perfect in~ompresslble 
fluid, linearized for a nearly stationary flow are considered and the class of sta- 
tionary flows for which these linearized equations admit exact explicit solutions 

is indicated. The analysis of derived equations shows that in some stationary 

flows the perturbation buildup considerably differs from that obtaining in cases 
generally considered in the theory of hydrodynamic stability: there appears an 

infinitely great number of unstable configurations, the flow pattern is difficult 
to predict (since an approximate determination of perturbation development with 
time necessitates a rapidly increasing amount of information about initial con- 
ditions, etc), These differences are due to the different geometry of stationary 

flows. In the recently constructed models of stationary flows the assumption is 

made that a fluid particle in motion stretches into a filament or ribbon whose 

length exponentially increases with time, while in the usually considered flows 
the length is assumed to be a linear function of time. In two-dimensional flows 

the phenomenon of exponential stretching of particles is impossible. It is shown 
that this is, also, impossible in three-dimensional flows in which the vectors of 

velocity and viscosity are not collinear. 

1. The linsrrired Euler spurtion. The rhortenad equation, 
Let us write Euler’s equation in the form of a vortex equation 

ar :dt = {v,r] (P = rot v) (1.1) 
where the Poisson’s bracket of the two vector fields is defined by the condition 

0 [a,bf = D&a - DaDh 

in which I), denotes integration in the direction of field q.Let us consider a small 
perturbation u of the stationary flow V. Let s be the vortex perturbation field: rot (V f 

j- u) = f + S. Equation (1.1) linearized in the neighborhood of flow v is of the 
form &/at = {v,s} + (rot-is,c) (1.2) 

The operation rot-l is understood as the restitution of a nondivergent vector field over 



Notes on the three-dimensional flow pattern of a perfect fluid 237 

its vortex field. In the multiply-connected case it is necessary to consider instead of 
the vortex field the totality of velocity field circulations over all possible closed contours 

(not necessarily homologous to zero), i. e. , the vortex field together with velociry field 

circulations over basic univariate cycles. If the flow region has a rim, the velocity field 
is to be assumed tangent to it. 

Let us examine the bahavior of solutions of this equation which is linear with respect 

to s. Note that the first term in the right-hand side of (1.2) is a more powerful linear 
operator over S than the second. Hence the second term may be considered as a pertur- 

bation of the first. In this way we obtain the shortened equation 

ds / dt = ( v, s} (1.3) 

If the stationary flow is potential (r = O), the second term in Eq. (1.2) vanishes. and 
in that case the shortened equation (1.3) is the same as the linearized Euler equation 

(1.2). In accordance with the theory of perturbations [ 11 it is reasonable to assume that 

the shortened equation defines the continuous part of the spectrum of Eq. (1.2). 
The shortened equation (1.3) implies that vector s is carried by the stationary flow. 

If the geometry of the stationary flow v is known, this equation can be solved explicitly. 
Let {g’} be a one-parameter group of diffeomorphisms induced by the stationary flow, 
hence g’ (z) is the solution of the system of ordinary differential equations 

$ ;: (x) = v (g’ @))Y g”(z) = L (1.4) 

Solution for s of the shortened equation (1.3) can now be expressed in terms of its initial 

conditions by formula 

S (t, 5) = g*‘S (0, g-’ (5)) 

where gX:’ is the derivative of the image of g’. 

(1.5) 

2. The action - angle vrrlrbler. The geometry of stationary flows of 
perfect fluid was examined in [2]. It is shown there that, when the fields v and r are 
not identically collinear in any region, the space filled with fluid becomes divided into 
cells in each of which the stream- and vorticity-lines lie on torus surfaces (*). Curvilin- 
ear coordinates, similar to the action- angle variables in conventional mechanics. We 

denote these coordinates by cp and 2. The coordinates Q, = (qt, cpz> mod 2n are 
angular coordinates along the tori and Z is the “action variable” numbering the latter. 
The coordinates ‘pl, (pa and z can be chosen so that a volume element is defined by 

d~ld~& and the fields v and r by 

v = Ulb)& + v2 (4 &' r = r1 (2) LT- &pl + F-z @) & 

Equations (1.4) are integrable in the system of coordinates q, ,a . For the components 
of field s in coordinates cp, z 

S (t; ep, 2) = Sl g1 + s2& + s3 g 

from (1.5) we obtain the expressions 

*) Cells of a different kind in which all streamlines are closed are also possible in the 
case of flow in a manifold with a rim; this case is not considered here. 
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%,z(G cp, 2) = s1,3(0; 'PO, 2) + %,233 (0; 'PJ, q, s3(t; T, 2) = s3(0; 'PO, 2) 

(% = cp - q (2.1) 

where the prime denotes a derivative with respect to Z. 

Formulas (2.1) imply that solutions of the shortened equation (1.3) (for v’ # 0) 
usually increase linearly with time. Hence the conventional (exponential) instability 
of linearized Euler equation can only be due to the second term in formula (1.2). In 

accordance with the theory of perturbations it is reasonable to expect the appearance 

of a finite number of unstable discrete eigenvalues (there is no rigorous proof of this). 

An interesting exception is the instability of the Couette flow between two cylinders 

(this was brought to the author’s attention by V. I. Iudovich). 
In a Couette flow the velocity component of the basic flow along the cylinder axis is 

zero, hence invariant with respect to Bernoulli’s constant. This results in the degeneration 
of a whole segment of the continuous spectrum into a single point. The longitudinal 

velocity component u, in formula (3.1) is for certain values of the wave vector m in- 
dependent of Z. 

The assumption of finiteness of the number of unstable configurations relates to a non- 
degenerate continuous spectrum, when the longitudinal velocity component varies with 

Bernoulli’s constant, 1. e., u, ’ + 0 in (3.1). For such nondegeneracy to exist it is, for 

example, sufficient for the curvature of the plane curve u1 ;= u1 (z), u2 = v2 (z) to be non- 
zero and for the curve to be regular. 

The question of retention of the detected above slow instability when passing from 

the shortened equation (1.3) to the complete equation (1.2) is discussed in Sect. 4 below. 
The other possibility of exponential instability is related to the collinearity of v and r, 

when the action - angle variables cannot be introduced and the stationary flow geometry 
differs from the described above (cf. [S]). This form of instability is examined in Sect. 5. 

3. Spectrum of the shortened equation. For a more detailed analysis 
of solutions of Eq, (1.3) we expand s into a Fourier series in terms of cp,using the foll 

owing notation. Let m,which we shall call the wave vector, be a pair of integers ml 
and m2. We denote m,cp, + m2q2 by (m, ‘p) the number arms’ by m and 

the pair ~zi = - m2 and n2 = m, by n . 
For each wave vector we determine the “longitudinal”, “transverse”, and “normal” 

vector fields 

(For IIL = 0 we assume, e.g., e, = L?/~Q and e,=ti,‘@,). 
The Fourier expansion of field s can now be written as 

s = 2 (f&em + &en + Cmez) ei(mlq) 
*n 

where A,, B, and Cm are functions of 2. 
It can be readily verified that the divergence of fields em, e, and e, is zero (this 

is the result of the form dv, &p2&)of the volume element). Hence 

div s = 2 (imA, + DC,) ei(myq) 
m 

Consequently the nondivergent fields are determined by the condition ‘I imA., f 
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+ DC, = 0 for all m”. 
In accordance with this condition the set of functions B, and c,,, (for m = 0 we 

have c, = const but A,, is to be added) can be taken as’ the “coordinates” in the space 
of convergent fields. In such system of coordinates Eq. (1.3) is decomposed into a series 
of triangular systems 

R, = - imv,R, +- vn’Cm 

C, = - imv,C, 
(3.1) 

where v - v,,,e,,+ v,e, is the velocity field of the stationary flow (for m -= 0 we 
add the equation A, = vu’ Co); the prime and the dot denote differentiation with resp- 

ect to z and t. respectively. 

Formula (3.1) again implies the nonexponential instability of Eqs. (1.3). Furthermore, 

it contains the definition of the spectrum of Eq. (1.3): to each wave vector m corresponds 

a segment of the continuous specaum along the imaginary axis. The related “frequencies” 

mVln are equal to all kinds of frequencies (m, v) of the stationary flow at various tori 
corresponding to various values of the z -coordinate. The multiplicity of each segment 

is not less than two (the B - and C-components have the same frequencies). 

4. The theorem of Squire for shear flows. The coordinates introduced 
above are suitable for analyzing the shortened equation (1.3), however, since in curvi- 

linear coordinates the operator rot-l is of a complicated form, analysis of the complete 
equation (1.2) is generally difficult. A particular case in which the analysis can be re- 
duced to a one-dimensional problem is that of flow with straight streamlines. All plane 
rectilinear flows, as well as the more general ones in which the fluid flows in parallel 

planes at constant velocity which varies in magnitude and direction when passing from 

one plane to another, belong to this class. Study of the latter may be considered as an 

approximate analysis of general flow in the torus geometry, in which the torus curvature 
is neglected, while shear (variation of the direction of streamlines from one torus to 
another) is taken into consideration. 

Let wl, Q and z be Cartesian coordinates and dL” == dq,’ L- dq,’ f dz’. In this 
case it is expedient to consider periodic flows of not necessarily 2n periodicity (e. g, 

we can assume the periods of v1 and ‘pz to be 2nX, and 2nXz , respectively)., The 

only alteration to be introduced in formulas in Sect. 3 is that now the wave vector m 

does not run through a grid of whole points but through grid {(ml / xl, m2 ! x2)). 
On these assumptions the expansion of the vortex field P in terms of unit vectors err,, 

t’n and C, is of the form r = - J.~’ e,,, _t v,,, e,. The matrices of operator rot in 
coordinates B,,, . C,,, and the operator of Poisson’s bracket containing r are,respectively, 

(J _ E _! ms2Da imunr Urn” 

im 
( 

-. 
I; (1 )g ( \ 0 il~lV,*’ 1 

where E is an identical transformation. Hence in our coordinates the linearized Euler’s 

equation (1.2) is decomposed into a set of systems of equations corresponding to various 
m. After calculation we obtain for m =+ 0 the triangular system 

n, = [irnv, ) $(E - m-2D”)-1 R,n 
I 

C,, = irjlun,C, -i U,,’ (E - ~~~-3U”)-‘~m (4.1) 

and for m = 0 we have the system A, = B, = C, = 0. The first equation becomes 
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separated and, if the B-component does not have exponential instability, the latter is 
also absent in the C-component (this is implied by the nonhomogeneous linear equation 

obtaining for C, ). 

Note that the equation for B,,, contains only the longitudinal velocity component 
um. Hence this equation is the same as that derived in the analysis of two-dimensional 

flow of a perfect fluid, whose velocity profile is the component Urn (z) of the velocity 
vector of a three-dimensional flow in the direction of the wave vector m. 

Thus a rectilinear three-dimensional flow is exponentially unstable when, and only 

when, at least one of the two-dimensional flows of a perfect fluid, obtained by the sub- 
stitution for the velocity vector v of its longitudinal component urn, is exponentially 

unstable. The problem of exponential instability of the considered class of three-dimen- 

sional flows of perfect fluid is thus reduced to a similar problem for a series of two-di- 
mensional flows corresponding to various values of the wave vector. 

In the particular case of flow free from shear (constant direction of v ) all velocity 
profiles are proportional to each other and the obtained result conforms to the theorem 

of Squire for a perfect fluid [4]. 
The Jordan form of system (4.1) tends to indicate that in three-dimensional flows, 

unlike in two-dimensional ones, the linear increase of vortex perturbations with time is 

the rule, even in the absence of exponential instability. 

6. Stationary flow8 with exponentirl rtretching of particlea. 
The flow region is a three-dimensional compact manifold M constructed in the following 

manner. (*) 
Let us, first, consider a conventional three-dimensional space in coordinates 5, Y, z 

and determine.the following three diffeomorphisms of that space: 

T, (a, Y, z) = (x + 1, Y, z), Tz (~7 Y, z) = (~7 Y + 1, z> 

Ts (~7 Y, z) = (2 x + y, a + Y, z + 1) 

Each of these transforms into itself the lattice of points with complete coordinates Z, Y, 
z. I,et us identify all points of thez Y z -space which can be obtained from each other 

by successive application of Ti and Tima (in any order). As the result a compact ana- 
lytic manifold M is created which may be visualized as the product of multiplication of 
a two-dimensional torus {(z, y) mod 1) by segment 0 & Z < 1 whose end tori are 

identified by formula (5, y, 0) zz (2~ + y, J: + Y, 1). We introduce on the drived 
manifold a Riemann metric. For this we construct in the z Y z -space a Riemann metric 

invariant with respect to all Ti. 
Let us examine the linear transformation of the x y -plane 

Transformation R has eigenvalues hi,a = (3 f fs) / 2. Note that Ai > 1 > hz ) 

>o, h&s = 1 , and the eigendirections are orthogonal to each other. Let (p, Q) 

*) This kind of manifold became important in the contemporary qualitative tneory of 
ordinary differential equations after the work of Smile, whose attention was drawn to 

this example by Thorn. 
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be a Cartesian system of coordinates in the z y -plane with the axes p and q directed 

along eigenvectors with eigenvalues & > 1 and A2 < 1 , respectively. 
Let us set &s = e-W*dp2 + eaWXq2 + dz2 (CL = In h,) (5.1 1 

Metric o?.s2 is invariant with respect to transformations Ti , hence it defines on the three- 

dimensional compact manifold M an analytic Riemann structure. 
Let us now consider the vector field 8 / 82 in the z YZ-space. Since it fs invariant 

with respect to transformations Ti , it defines the vector field v on manifoldM. Field 

v on the Riemann manifold M is harmonic: div v = 0, rot v = 0. Hence v may be 

taken as the velocity field of a stationary potential flow of a perfect fluid. Every particle 

of fluid moving in that field exponentially stretches in the q-,direction and contracts 

in the p direction, as implied by formula (5.1). 

8. Anrlyai: of the line&rimed Euler aquatlon. Since the considered 
flow is potential, the linearized Euler’s equation (1.2) is equivalent to the shortened 
equation (1.3). Owing to the simple geometry of flow the latter equation is solved by 

formula (1.5). The solution is conveniently expressed with the use of the following no- 
tation. Let us consider in the py z -space the vector fields 

These fields are invariant with respect to all transformations Ti , consequently they 
can be considered as vector fields on the manifold M. The directions of fields en, e, 

and e, are invariant with respect to the phase stream g’ of field e, (in the coordinate 

form g’ (p, q, Z) =z (p, q, z $ t)). Under the action of the stream the fields them- 

selves are transformed by formulas 

g,‘ep = e-Pie 
P’ 

gete4 = e@e t 
9’ g, e, = e, 

In accordance with this, the direction of field e, is called the stretching direction, 

that of eP the compression direction, and that or e, the neutral direction. Any vector 

field w on Mean be decomposed in these directions 

W = wpep + zoqeq + w,e, 

where wpr wq and w, are functions on the manifold 11/1. 
Formula (1.5) applied to the stationary flow v = e, has with the introduced notation 

the form 

s, (t) = &U’,c,(C), sq (t) = eW’Pq (O), sz (t) = tits, (0) (6.1) 

where Uf is a linear operator acting on functions on the manifold M by formula” (U’ f) 
(g) = f (g’g)for any point E from M”. Note :hat the stream g’ maintains its volume, 
nence operator U’ is unitary. 

Formula (6.1) provides fairly complete answers to all kinds of questions on the growth 
of perturbations of a stationary flow v. First, it shows that the q-component of vortex 
perturbation exponentially increases with time, while the p component is exponentially 
attenuated. 

Next, the spectrum of operator Uz can be easily analyzed by a Fourier series expan- 
sion in terms of (T, y) with fixed z, and for functions independent of x and y by such 
expansion in terms of 2. This spectrum has a countably-multiple continuous (Lebesgue) 
component along a unit circle and, also, a discrete set of eigenvalues corresponding to 



eigenfunctions (Pm = ezirimz (m are integers). This implies that Euler’s equation (1.2) 
linearized for a ciose to stationary flow v = e, has a countable set of unstable eigen- 

values u - &‘cim related to the countable set of increasing perturbations of vortex 
s = qrn (2) e, (m = f 1, & 2:...). 

The difficulty of predicting solutions of the linearized Euler equation (3.2) for flows 

with exponential stretching of particles is also indicated by formulas (6.1): to find an 
approximate solution in terms of t it is necessary to know with considerable exactitude 

a number of high order harmonics in the initial perturbation s (U) which rapidly increase 

with t . Comparison of formulas (6.1) and (2.1) shows that the exponential increase 

of particle stretching considerably increases the difficulty of predicting the growth of 
perturbations, as compared with conventional flows with linear stretching of particles 

considered in Sect. 2 - 4. 
Phenomena similar to those brought to light in this example are to be expected also 

in other flows with exponentially stretched particles, and such flows are possible in re- 

gions of conventional three-dimensional space. Experimental confirmation of this can 

be found in [5, 61. Computer calculations cited in [S] tend to show that the stationary 
flow of a perfect fluid specified by formulas [2] 

vx = A sin 2 -T- C c3s y, v!, = B sin x + A cos z, u, = Csin y j- Be03 Z 

kas the property of exponentially stretched particles. 
The author thanks L.D. Faddeev and V. I. Iudovich for valuable discussions. 
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